基于Soluplus的东莨菪内酯胶束在Caco-2细胞上的摄取和代谢

曾迎春, 纪忠华, 谢兴亮, 张全, 郑雅鑫

中国药学杂志 ›› 2018, Vol. 53 ›› Issue (23) : 2029-2033.

PDF(4045 KB)
PDF(4045 KB)
中国药学杂志 ›› 2018, Vol. 53 ›› Issue (23) : 2029-2033. DOI: 10.11669/cpj.2018.23.010
论著

基于Soluplus的东莨菪内酯胶束在Caco-2细胞上的摄取和代谢

  • 曾迎春1,2, 纪忠华3, 谢兴亮2, 张全2, 郑雅鑫2*
作者信息 +

Cellular Uptake and Metabolism of Soluplus-based Scopoletin Micelles in Caco-2 Cells

  • ZENG Ying-chun1,2, JI Zhong-hua3, XIE Xing-liang2, ZHANG Quan2, ZHENG Ya-xin2*
Author information +
文章历史 +

摘要

目的 建立测定细胞中东莨菪内酯(scopoletin,Sco)含量的分析方法,考察包载Sco的聚乙烯己内酰胺-聚乙酸乙烯酯-聚乙二醇(soluplus)胶束给药系统(Sco-Ms)在Caco-2细胞上的摄取和代谢,初步探究Sco-Ms促进Sco口服吸收的机制。方法 采用液相色谱-串联质谱(LC-MS/MS)法,结合酶水解法,测定细胞样品中Sco原药及代谢物含量,计算Sco的细胞摄取率和代谢率;并利用多种抑制剂考察Sco-Ms的入胞途径。结果 Sco在5~1 000 ng·mL-1内线性良好;各时间点Sco-Ms在Caco-2细胞上的摄取率均显著高于Sco;Sco-Ms,显著降低了Sco在细胞中的代谢率;Sco-Ms主要通过网格蛋白介导的內吞作用和胞饮作用进入细胞。结论 提高细胞对Sco的摄取;同时降低Sco的代谢率,是Sco-Ms促进Sco口服吸收的重要机制。

Abstract

OBJECTIVE To develop an analytical method for the quantification of scopoletin (Sco) and investigate the cellular uptake and metabolism of polyvinylcaprolactam-polyvinyl acetate-polyethylene glycol (soluplus)-based Sco micelles (Sco-Ms) in Caco-2 cells, as well as exploring the possible mechanisms involved in the oral absorption of Sco-Ms.METHODS Combined with enzymatic hydrolysis for pretreatment, a liquid chromatography-electrospray ionization-tandem mass spectrometric (LC-MS/MS) method was developed for the quantification of Sco and its corresponding metabolite. Then, cellular uptake efficiency and metabolic rate of Sco were calculated.RESULTS This method was proven to be linear over the concentration range of 5-1 000 ng·mL-1. Cellular uptake of Sco-Ms increased significantly compared with that of free Sco at various time points. Meanwhile, Sco-Ms inhibited the enzymatic degradation of Sco. Sco-Ms were primarily internalized into enterocytes via macropinocytosis and clathrin-dependent pathways.CONCLUSION Enhanced cellular uptake and decreased metabolic rate are pivotal mechanisms by which Sco-Ms promotes oral absorption of Sco.

关键词

东莨菪内酯 / 聚乙烯己内酰胺-聚乙酸乙烯酯-聚乙二醇 / 胶束 / Caco-2细胞 / 液相色谱-串联质谱

Key words

scopoletin / soluplus / micelle / Caco-2 cells / LC-MS/MS

引用本文

导出引用
曾迎春, 纪忠华, 谢兴亮, 张全, 郑雅鑫. 基于Soluplus的东莨菪内酯胶束在Caco-2细胞上的摄取和代谢[J]. 中国药学杂志, 2018, 53(23): 2029-2033 https://doi.org/10.11669/cpj.2018.23.010
ZENG Ying-chun, JI Zhong-hua, XIE Xing-liang, ZHANG Quan, ZHENG Ya-xin. Cellular Uptake and Metabolism of Soluplus-based Scopoletin Micelles in Caco-2 Cells[J]. Chinese Pharmaceutical Journal, 2018, 53(23): 2029-2033 https://doi.org/10.11669/cpj.2018.23.010
中图分类号: R944   

参考文献

[1] SHAW C Y, CHEN C H, HSU C C, et al. Antioxidant properties of scopoletin isolated from Sinomonium acutum. Phytother Res, 2003, 17(7):823-825.
[2] PANDA S, KAR A. Evaluation of the antithyroid, antioxidative and antihyperglycemic activity of scopoletin from Aegle marmelos leaves in hyperthyroid rats. Phytother Res, 2006, 20(2):1103-1105.
[3] MEOTTI F C, ARDENGHI J V, PRETTO J B, et al. Antinociceptive properties of coumarins, steroid and dihydrostyryl-2-pyrones from Polygala sabulosa(Polygalaceae) in mice. J Pharm Pharmacol, 2006, 58(1):107-112.
[4] TABANA Y M, HASSAN L E, AHAMED M B, et al. Scopoletin, an active principle of tree tobacco (Nicotiana glauca) inhibits human tumor vascularization in xenograft models and modulates ERK1, VEGF-A, and FGF-2 in computer model. Microvasc Res, 2016, 107:17-33.
[5] MOON P D, LEE B H, JEONG H J, et al. Use of scopoletin to inhibit the production of inflammatory cytokines through inhibition of the IκB/NF-κB signal cascade in the human mast cell line HMC-1. Eur J Pharmacol, 2007, 555(2-3):218-225.
[6] ZENG Y, LI S, WANG X, et al. Validated LC-MS/MS method for the determination of scopoletin in rat plasma and its application to pharmacokinetic studies. Molecules, 2015, 20(10):18988-19001.
[7] CHAVAN R B, THIPPARABOINA R, KUMAR D, et al. Co amorphous systems: a product development perspective. Int J Pharm, 2016, 515(1-2):403-415.
[8] ZENG Y, LI S, LIU C, et al. Soluplus micelles for improving the oral bioavailability of scopoletin and their hypouricemic effect in vivo. Acta Pharmacol Sin, 2017, 38(3):424-433.
[9] LIN Q, LING L, GUO L, et al. Intestinal absorption characteristics of imperialine: in vitro and in situ assessments. Acta Pharmacol Sin, 2015, 36(7):863-873.
[10] US DHHS, FDA, CDER. Guidance for Industry: Bioanalytical Method Validation. 2013.
[11] LUO J W, ZHANG Z R, GONG T, et al. One-step self-assembled nanomicelles for improving the oral bioavailability of nimodipine. Int J Nanomed, 2016, 11:1051-1065.
[12] ZHANG J, LI J, YUAN J, et al. Mechanism of enhanced oral absorption of morin by phospholipid complex based self-nanoemulsifying drug delivery system. Mol Pharm, 2015, 12(2):504-513.
[13] PINTO M. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol Cell, 1983, 47:323-330.
[14] HU M, CHEN J, LIN H. Metabolism of flavonoids via enteric recycling: mechanistic studies of disposition of apigenin in the Caco-2 cell culture model. J Pharmacol Exp Ther, 2003, 307(1):314-321.
[15] SUN H, PANG K S. Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a theoretical study. Drug Metab Dispos, 2008, 36(1):102-123.

基金

成都医学院四川养老与老年健康协同创新中心项目资助(YLZBZ1808);成都医学院科研基金课题资助(CYZ17-07);宁波市科技创新团队资助(2015C110027)
PDF(4045 KB)

104

Accesses

0

Citation

Detail

段落导航
相关文章

/